ME303ES: MECHANICS OF SOLIDS ### B.Tech. II Year I Sem. L T/P/D C 3 1/0/0 3 Course Objectives: The objective is to learn the fundamental concepts of stress, strain, and deformation of solids with applications to bars, beams, and columns. Detailed study of engineering properties of materials is also of interest. Fundamentals of applying equilibrium, compatibility, and force-deformation relationships to structural elements are emphasized. The students are introduced to advanced concepts of flexibility and stiffness method of structural analysis. The course builds on the fundamental concepts of engineering mechanics course. This course will advance the students' development of the following broad capabilities: - Students will be able to understand basic concepts of stress, strain and their relations based on linear elasticity. Material behaviors due to different types of loading will be discussed. - 2. Students will be able to understand and know how to calculate stresses and deformation of a bar due to an axial loading under uniform and non-uniform conditions. - 3. Students will understand how to develop shear-moment diagrams of a beam and find the maximum moment/shear and their locations - 4. Students will understand how to calculate normal and shear stresses ## **Course Outcomes:** - 1. Analyze the behavior of the solid bodies subjected to various types of loading; - 2. Apply knowledge of materials and structural elements to the analysis of simple structures; - 3. Undertake problem identification, formulation and solution using a range of analytical methods: - Analyze and interpret laboratory data relating to behavior of structures and the materials they are made of, and undertake associated laboratory work individually and in teams. - 5. Expectation and capacity to undertake lifelong learning ## UNIT - I **Simple Stresses & Strains:** Elasticity and plasticity – Types of stresses & strains–Hooke's law– stress – strain diagram for mild steel – Working stress – Factor of safety – Lateral strain, Poisson's ratio & volumetric strain – Elastic moduli & the relationship between them – Bars of varying section – composite bars – Temperature stresses. Strain energy – Resilience – Gradual, sudden, impact and shock loadings. ## **UNIT - II** **Shear Force and Bending Moment :** Definition of beam – Types of beams – Concept of shear force and bending moment – S.F and B.M diagrams for cantilever, simply supported and overhanging beams subjected to point loads, u.d.l., uniformly varying loads and combination of these loads – Point of contra flexure – Relation between S.F., B.M and rate of loading at a section of a beam. #### UNIT - III **Flexural Stresses :** Theory of simple bending – Assumptions – Derivation of bending equation: M/I = f/y = E/R Neutral axis – Determination bending stresses – section modulus of rectangular and circular sections (Solid and Hollow), I,T, Angle and Channel sections – Design of simple beam sections. **Shear Stresses:** Derivation of formula – Shear stress distribution across various beams sections like rectangular, circular, triangular, I, T angle sections. #### UNIT - IV **Principal Stresses and Strains:** Introduction – Stresses on an inclined section of a bar under axial loading – compound stresses – Normal and tangential stresses on an inclined plane for biaxial stresses – Two perpendicular normal stresses accompanied by a state of simple shear – Mohr's circle of stresses – Principal stresses and strains – Analytical and graphical solutions. **Theories of Failure**: Introduction – Various theories of failure - Maximum Principal Stress Theory, Maximum Principal Strain Theory, Strain Energy and Shear Strain Energy Theory (Von Mises Theory). #### UNIT - V **Torsion of Circular Shafts :** Theory of pure torsion – Derivation of Torsion equations : $T/J = q/r = N\theta/L$ – Assumptions made in the theory of pure torsion – Torsional moment of resistance – Polar section modulus – Power transmitted by shafts – Combined bending and torsion and end thrust – Design of shafts according to theories of failure. **Thin Cylinders:** Thin seamless cylindrical shells – Derivation of formula for longitudinal and circumferential stresses – hoop, longitudinal and Volumetric strains – changes in dia, and volume of thin cylinders – Thin spherical shells. ## **TEXT BOOKS:** - 1. Strength of materials R.S. Kurmi and Gupta. - 2. Solid Mechanics, by Popov - 3. Strength of Materials Ryder. G.H.; Macmillan Long Man Pub. - 4. Strength of Materials W.A. Nash, TMH # **REFERENCES:** - 1. Strength of Materials -By Jindal, Umesh Publications. - 2. Analysis of structures by Vazirani and Ratwani. - 3. Mechanics of Structures Vol –I by H. J. Shah and S. B. Junnarkar, Charotar Publishing House Pvt. Ltd. - 4. Strength of Materials by D.S Prakash Rao, Universities Press Pvt. Ltd. - 5. Strength of Materials by S. S. Rattan, Tata McGraw Hill Education Pvt. Ltd. - 6. Fundamentals of Solid Mechanics by M. L. Gambhir, PHI Learning Pvt. Ltd - 7. Strength of Materials by R.K Rajput, S. Chand & Company Ltd.